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ABSTRACT

Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species
distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context
and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected
stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A
spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the
catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness
within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments,
using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The
resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across
the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components
and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on
model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, land-
scape-scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation.
Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
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INTRODUCTION

Globally, ecologists are being asked to forecast ecological
outcomes of alternative resource management options,
typically in the context of changing climate and land uses
(Clark et al., 2001; Araujo and Rahbek, 2006). Management
of water availability in streams and rivers provides a
prominent example. Population growth and expanding agri-
cultural irrigation are increasing the demands to divert,
transfer and store water from stream and river ecosystems
(Postel 2000; Postel and Richter 2003; Fitzhugh and Richter
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2004; Sabo et al., 2010). At the same time, the declining
capacity of river systems to support native biota, including
imperilled species and fisheries, is a primary concern for
natural resource managers and conservationists (Pringle
et al., 2000, Arthington and Pusey, 2003; Postel and
Richter, 2003; Galat et al., 2005; Dudgeon et al., 2006).
Both problems—increasing water demands relative to avail-
ability and declining viability of aquatic species—will likely
be exacerbated by future changes in land use, such as
urbanization (Paul and Meyer, 2001; Fitzhugh and Richter,
2004), and climate change (Kundzewicz et al., 2007; Milly
et al., 2008; Palmer et al., 2008; Nelson et al., 2009).
This paper illustrates a methodological approach and dis-

cusses research challenges for constructing dynamic models
that can inform river management in relation to conserving
the public domain in the USA.
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aquatic biodiversity across landscapes. We define a land-
scape in this application as a group of biologically and
hydrologically connected streams and their drainage basins.
These landscapes will most often be contained within indi-
vidual basins but could also encompass a group of basins
connected by, for example, migratory fauna (e.g. fishes,
waterfowl) or human actions (such as interbasin water
transfers). Defined in this way, landscapes (covering, e.g.
102–104 km2) often provide the most relevant spatial extent
for evaluating management consequences to regional bio-
diversity or fisheries because local actions such as water
diversions can be evaluated in the context of cumulative
impacts on ecological condition (Pringle, 2001; Dudgeon
et al., 2006).
Tools for predicting outcomes of water management

decisions on species conservation within landscapes are
not well developed. Site-specific analyses of relations
between streamflow and habitat (Bovee et al., 1998) or other
resource values (Brizga et al., 2002) are frequently applied
to individual streams. However, the large number and poten-
tial variety of streams that compose a landscape make it
cost-prohibitive to apply these detailed assessments over
areas of large extent. At the other end of the spatial scale,
generalized relations between hydrologic alteration and eco-
logical responses are being advanced to support regional
streamflow policies (Arthington et al., 2006; Poff et al.,
2010). Ecologically based, regional policies for limiting
changes in streamflow regimes are expected to provide a
management starting point for conservation. However, deci-
sions addressing conservation of biota within particular
landscapes may ultimately require data and tools that can
be tailored to the specific context. That is, resource man-
agers will need answers to questions such as ‘Will a particu-
lar streamflow policy protects species in this landscape,
given concurrent changes in land use or climate patterns?’
Such questions fall between those addressed by regional
guidelines and site-specific analyses of habitat-flow rela-
tions and could be addressed using simulation models that
link local (e.g. population persistence) and landscape (e.g.
dispersal) processes. In particular, dynamic, spatially expli-
cit models allow scenario analysis for effects of environ-
mental change on species distributions at spatial scales
relevant to conservation (Gaff et al., 2000; Akcakaya
et al., 2004; Wintle et al., 2005), while identifying research
most needed to reduce uncertainty.
Our work focuses on developing dynamic models of

stream fish occurrences in a southeastern US river system
where management challenges include conserving bio-
diversity while meeting water-supply demands and accom-
modating land use changes imposed by a growing human
population. As in other regions (Arthington et al., 2006;
Dudgeon et al., 2006; Acreman and Ferguson, 2010), nat-
ural resource managers and stakeholders in the southeastern
Published 2012. This article is a U.S. Government work and is in the public dom
USA are asking what flow levels should be maintained in
rivers and streams to protect native biota, how building
additional storage reservoirs for water supply could affect
imperilled species and, generally, what management strat-
egies might best protect the region’s natural heritage over
the coming decades. To provide a framework for addressing
these questions, we have developed a model that integrates
streamflow alteration with fish ecology to predict species
viability at a landscape scale.
Our conceptual basis (Figure 1) builds on hypotheses

relating broadly defined flow components (large floods,
small floods, high-flow pulses, base flows and extreme low
flows; King et al., 2003; Postel and Richter, 2003; Richter
et al., 2006) to stream fishes by way of population processes
(colonization, reproduction and recruitment, and local
extinction; Table 1). The influences of landscape context
are represented as interactions of local channel condition
(shaped by geology, topography, historical land use and
flood regime) and water quality parameters (consequences
of land use, pollutant loading and natural factors) with
streamflow dynamics to influence population persistence
(Figure 1). Reach isolation (e.g. by barriers such as stream
impoundments) influences population persistence by con-
straining potential colonization. In this paper, we describe
methods for integrating hydrology with metapopulation pro-
cesses, on the basis of this conceptual model, to simulate
effects of changes in streamflow on fish occupancy dynam-
ics. We illustrate a management application of the model by
simulating effects of alternative water withdrawal scenarios
on species occupancy. We also explore model sensitivity to
differing sources of uncertainty and conclude by discussing
research directions for improving dynamic landscape-scale
model applications to aquatic conservation issues.
METHODS

Study area

The upper Flint River system, Georgia, drains approxi-
mately 7560 km2 (Figure 2) and provides water for an
urbanizing portion of the southeastern US Piedmont. Popu-
lation growth in the Upper Flint Water Supply Management
Area has exceeded 200% since 1970 (to over 302 000 in
2000) and is projected to nearly double again by 2030
(CH2MHill, 2003). Multiple water supply reservoirs, with
associated water withdrawals for municipal uses, have been
constructed or planned within the upper Flint River system
in the past two decades. At the same time, the Flint River
is valued for recreational boating and fishing, aesthetic
values and for supporting unique biodiversity. The river
main stem flows unimpeded by major impoundments for over
350 km from Piedmont headwaters onto the Southeastern
Plains and harbours habitats and biologically diverse
ain in the USA. River Res. Applic. (2012)
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Figure 1. Conceptual basis for the hydrology–metapopulation dynamics model, illustrating streamflow effects (broken arrows) on population
processes (shaded boxes). Wide arrows represent multiple connections between model components (e.g. hydrologic model output to

individual flow components)

STREAM FISH METAPOPULATION DYNAMICS
communities of the types eliminated by damming in rivers
across the eastern USA (Couch et al., 1996; Pringle et al.,
2000). The upper Flint River system supports at least 50 spe-
cies of native freshwater fishes, including five species en-
demic to the encompassing Apalachicola Basin, as well as
remnant populations of imperilled freshwater mussel species
(Brim-Box and Williams, 2000; Williams et al., 2008).
To develop a prototype model, we have focused onmetapo-

pulation dynamics of stream fishes in the Potato Creek
Table I. Streamflow effects on productivity, persistence and movemen
framework for the hydrology–metapopulation model

Population process Streamflow effec

Biological productivity
(recruitment, reproduction
and growth)

Floods transport sediments and sco
influencing spawning habitat condi
Floods and high-flow pulses (flow v
reduce juvenile fish abundances.
Base flows and high flow pulses infl
via effects on biotic interactions, pe
organic matter transport and nutrien

Persistence (survival) Large floods influence channel form
flow-dependent habitat effects on p
Base flow magnitudes interact wi
determine hydraulic habitat availa
for biotic interactions.
Extreme low flows limit survival
volume and effects on physiochemi

Movement (migration, dispersal
and colonization)

High-flow pulses initiate spawning m
and facilitate migration and dispers

Selected references emphasize studies or reviews most relevant to stream fishes in
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catchment (Figure 2) within the upper Flint River system.
The Potato Creek catchment (482 km2 at USGS gauge
02346500, the area modelled) contains much of the geo-
graphic variation, fish fauna and variety in landscape dynam-
ics present in the upper Flint but with a smaller total number of
stream segments. Modelling the Potato Creek catchment has
allowed us to evaluate methods for representing spatially
explicit geomorphology, streamflow and metapopulation
dynamics in a computationally manageable system.
ts of temperate stream fishes and represented in the conceptual

t Selected references

ur substrates,
tion.

Cattaneo et al., 2001

ariability) may Bain et al., 1988; Freeman et al., 2001;
Craven et al., 2010;

uence foodwebs
riphyton dynamics,
t availability.

Power et al., 1996; Doyle et al., 2005

, which constrains
ersistence.

Rabeni and Jacobson, 1993; Bunn and
Arthington, 2002

th channel form to
bility and potential

Peterson et al., 2009; McCargo and
Peterson, 2010

via reduced habitat
cal parameters.

Larimore et al., 1959; Bayley and Osborne,
1993; Magoulick and Kobza, 2003

ovements by fishes
al.

Hall, 1972; Labbe and Fausch, 2000;
Albanese et al., 2004; Franssen et al., 2006

systems or with traits similar to those in the Potato Creek study system.
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Figure 2. Location of the upper Flint River system (UFLB), Georgia,
USA, in the headwaters of the Flint Basin (FLB). The Flint and Chat-
tahoochee (CHB) rivers merge to form the Apalachicola River
(APB), which flows to the Gulf of Mexico. The prototype
hydrology–metapopulation model was constructed for the Potato

Creek catchment (PC, shaded) contained within the UFLB
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Figure 3. Overview of modelling approach. Geologic and geographic
data describing landscape variation are used to parameterize a
spatially explicit hydrologic model to classify stream segments
according to channel geomorphology, size and network position
and to predict species distributions for initial model conditions. By
using weather time series as input, the hydrologic model simulates
streamflow components, which in turn influence species-specific
metapopulation dynamics. Model output (shaded) comprises

spatially explicit variation in species occurrences through time
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Integrated model development

Overview. Streamflow effects on biota are simulated using
modelled hydrologic time series to drive metapopulation
state transitions for individual fish species in each stream
segment composing a catchment (Figure 3). A stream
segment is defined as a reach bounded by tributary
junctions, using streams mapped at a 1:24 000 resolution.
Defined at this relatively fine resolution, we assume that a
given fish species is unlikely to be continuously present in
all habitable segments, and that frequency of occurrence
will increase or decrease as flow conditions either promote
or reduce reproduction, survival and dispersal. Geographic
layers describing land use, vegetation, topography, parent
geology, stream size and slope for the study system are
used to predict initial species distributions. We also use
geologic and geographic data to parameterize a hydrologic
model, which uses daily weather station data (precipitation
and temperature) to simulate a corresponding time series of
streamflows for catchment sub-basins. Daily streamflows are
summarized into seasonal statistics that are used to estimate
Published 2012. This article is a U.S. Government work and is in the public dom
probabilities of metapopulation transitions (i.e. between
occupied and unoccupied) in each stream segment,
conditional on physical characteristics of each segment and
on the identity or characteristics of each species. The
outcome is a time series describing spatially explicit,
species-specific occupancy dynamics for a given water
management, climate and land use scenario. Outcomes can
be aggregated, for example, across segments to quantify
simulated changes through time in species-specific
occurrence frequencies or across species to map temporal
changes in community composition. Methods for developing
each model component are described in the succeeding text.

Simulating streamflow dynamics. We employ a spatially
distributed, deterministic, physically based hydrologic model
(USGS Precipitation Runoff Modelling System, PRMS;
Leavesley et al., 1983; Leavesley and Stannard, 1995) to
simulate spatial and temporal variation in streamflow under
current conditions and alternative land use, climate and
management scenarios (Viger et al., 2011). PRMS simulates
distributed streamflow (a combination of surface, subsurface
and groundwater flow) in predefined hydrologic response
units (HRUs) composing the catchment. The Potato Creek
model uses soil maps (State Soil Geographic database,
summarized at a 1-km grid) and the National Land Cover
Database (30-m grid resolution) for 2001 to parameterize
relative subsurface, land cover and vegetation characteristics
ain in the USA. River Res. Applic. (2012)
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STREAM FISH METAPOPULATION DYNAMICS
for each HRU (Viger et al., 2010). The model requires daily
inputs of precipitation and maximum and minimum air
temperature. These data are derived from the National
Weather Service Cooperative Observer Program and
distributed to the HRUs by multiple linear regression on the
basis of location (latitude and longitude) and altitude (Hay
and Clark, 2003; Viger et al., 2010). The Potato Creek
model also incorporates effects on streamflow of surface
water storage in man-made ponds and depressions scattered
across the landscape (Viger et al., 2010).
The hydrologic model is calibrated using a multi-objective,

stepwise calibration tool (Hay and Umemoto, 2006; Hay
et al., 2006) that adjusts values of selected parameters using
the Shuffled Complex Evolution algorithm (Duan et al.,
1993) until the difference between simulated and measured
streamflow statistics at USGS streamgage locations are mini-
mized. The procedure consists of four calibration steps,
addressing (i) mean monthly solar radiation, (ii) mean
monthly potential evapotranspiration, (iii) annual andmonthly
water balance, and (iv) daily streamflow components. The
model outlet is at a USGS streamgage on the Potato Creek
main stem (station 02346500), from which an 11-year record
(1960–1970) of daily streamflows has been used for calibra-
tion to best approximate the five seasonal flow statistics
included in the fish metapopulation model (described in the
succeeding text). Streamflow can be simulated at increasingly
finer resolutions by subdividing the model HRUs and calibrat-
ing PRMS parameters to provide the best fit of flows summed
across sub-basins to measured data, for the flow parameters of
greatest interest. To evaluate an effect of hydrologic model
resolution on metapopulation simulations, we have parti-
tioned the Potato Creek catchment into HRUs representing
two resolutions, ‘coarse’, in which 20 HRUs average
24.1 km2, and ‘fine’, in which the coarse units are subdivided
into a total of 166 smaller HRUs averaging 2.9 km2.

Representing the geomorphic template. Geomorphic variation
among stream segments is expected to mediate ecological
responses to changes in flow regime by altering the template
of physical habitat and the suite of physical processes
operating in a stream segment (Montgomery, 1999;
Rabeni and Sowa, 2002; Thorp et al., 2006; Peterson et
al., 2009; Poff et al., 2010). Recent research in the
Southeastern Plains portion of the Flint River system
provides strong support for using channel confinement as
a predictor of flow effects on habitat availability (Peterson
et al., 2009) and on response of fish species richness and
presence to drought flows (McCargo and Peterson, 2010).
Additionally, stream size is expected to influence flow
dynamics (Thorp et al., 2006) and reach-scale hydraulics
(Lamouroux and Cattaneo, 2006), and segment position in
the stream network is expected to influence potential for
colonization (Osborne and Wiley, 1992; Fagan 2002).
Published 2012. This article is a U.S. Government work and is in the public dom
Thus, the physical template for the prototype
metapopulation model comprises stream segments
(defined in the 1:24 000 stream network) categorized by
expected channel confinement, stream size and network
position relative to larger streams. For the Potato Creek
model, we classify segments as ‘unconfined’ if greater
than 10% of the drainage area polygon assigned to the
individual segment has 0 slope, estimated from 30-m
resolution digital elevation models. The 10% threshold is
based on exploratory analysis and comparison with
classification as ‘wetlands’ (and thus unconfined) in
National Wetland Inventory maps and represents a
potential source of channel misclassification. Each
segment is additionally attributed by link magnitude (total
number of first-order streams in the catchment polygon, a
measure of stream size), downstream link (link magnitude
of the next downstream reach, a measure of position
within the stream network; Osborne and Wiley, 1992) and
a binary variable, ‘isolated’, that is set to 1 if the segment
flows directly to an impoundment within a 10-segment
buffer. Selection of a 10-segment buffer for defining
‘isolation’ is an arbitrary choice that compromises
between narrow (e.g. direct connection to any other un-
impounded segment constitutes ‘not isolated’) and broad
(all segments upstream of any impoundment are
‘isolated’) definitions and is an additional potential source
of misclassification with respect to ecological state.

Simulating biotic response. A multistate metapopulation
model (J. T. Peterson, Oregon Cooperative Research Unit,
unpublished data) is used to simulate fish species
occupancy dynamics across the stream segments
composing the Potato Creek catchment. Initial probabilities
of occurrence for each of 37 native fish species are
estimated for each stream segment, using models relating
species occurrence to land use, geology, position in
the stream network (downstream link), and reach slope
(Ruiz and Peterson, 2007). Changes in species-specific
occurrences across the Potato Creek catchment are then
simulated by estimating the probabilities of state
transitions (local extinction, colonization, reproduction) at
each annual time step, as functions of streamflow statistics
in the encompassing HRU and segment characteristics. For
each stream segment, the initial occupancy status and
subsequent state transitions are modelled as draws from a
Bernoulli distribution with the corresponding estimated
probabilities. For example, if a species is absent from a
stream segment in time t, presence at time t + 1 is
simulated using a Bernoulli distribution with a probability
of success equal to the estimated colonization probability.
Streamflow effects on metapopulation state-transition

probabilities could be derived from a variety of sources,
including empirical data or expert opinion. For the Potato
ain in the USA. River Res. Applic. (2012)
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Creek model, streamflow effects on transition probabilities
were estimated from an empirical dataset comprising fish
species and life stage occurrences observed seasonally over
4 years in 23 stream reaches located in the lower Flint River
basin (McCargo and Peterson, 2010; J. T. Peterson, unpub-
lished data). The lower Flint study included observations
across severe drought, normal and wet conditions, for adults
and juveniles of 42 fish species, 41 of which were present in
both the upper and lower portions of the Flint River basin.
State-transition probabilities were estimated using hierarch-
ical multiple regression of response variables (observed
changes in state in each seasonal time step) as functions of
independent variables (streamflow during the time step,
channel characteristics, species traits) and taxa-specific
detection probabilities. Streamflow (‘flow’) during each time
step was quantified using variables selected to represent five
general flow components included in our conceptual model
(Figure 1): median daily flow (representing base flow),
standard deviation of daily flows (flow pulses), maximum
10-day moving average of daily flow (high flows), minimum
10-day moving average of daily flow (low flows) and the
minimum 10-day standard deviation of daily flow (flow
stability). Flow values were estimated separately for spring
(March–June) and summer (July–September) seasons and
normalized to the corresponding long-term, site-specific
average for use as predictors of state transitions at each site
in the dataset. State-transition probabilities were additionally
modelled as functions of stream size (linkmagnitude), channel
type, reach location (dlink magnitude) and species traits
(including maximum size, habitat preferences, reproductive
timing and duration; Craven et al., 2010). Relative support
for alternative models relating probabilities of colonization,
reproduction and extinction to these predictor variables
was evaluated using an information theoretic approach (J. T.
Peterson, unpublished data).
Parameter values from best-supported models using the

lower Flint River dataset are used to simulate metapopulation
dynamics for the Potato Creek model. In all model runs,
streamflow is simulated on a daily time step and aggregated
to the five seasonal statistics described earlier, normalized to
the HRU-specific seasonal averages for the simulation period
(1952–2006). Normalized spring and summer flow statistics
are used as predictors of seasonal state transitions, which are
summarized as year-to-year changes in occupancy. Failure
of a species to recruit young-of-year within timeframes scaled
to species-specific generation times results in local extinction.

Evaluating model sensitivity. We simulated species-specific
occupancy dynamics under two scenarios. The first scenario
represented historic flow conditions, simulated for 1952–
2006 and was used to analyse model sensitivity to error
and underlying assumptions. We estimated effects of
hydrologic model error and choice of HRU resolution,
Published 2012. This article is a U.S. Government work and is in the public dom
channel misclassification and uncertainty in hydrology–
metapopulation linkages on simulated species richness, a
widely used measure of ecological communities and
biodiversity, averaged across all segments. We then
compared variation in simulated species richness resulting
from model uncertainty with changes in average species
richness simulated during a severe drought (2000–2001)
using the best-supported model from the lower Flint
dataset. This comparison provided a measure of the extent
to which model uncertainty could overwhelm projected
effects of extreme events on biological condition. We also
examined effects of assumptions about fish dispersal on
simulation outcomes using two alternative dispersal
models. The first dispersal model (‘mainland-island
dispersal’; Hanski and Gilpin, 1991) allowed fish to
colonize tributary segments, provided the species was
present in the mainstream of Potato Creek, and the
segment was not isolated by an impoundment. The second
dispersal model (‘classic metapopulation dispersal’;
Levins, 1969) allowed colonization only from adjacent
occupied segments that were within a distance of 7 km.
The second scenario illustrated model application to

management questions by simulating effects of four levels
of water withdrawal from the main stem of Potato Creek
on downstream fish species occurrence. A monthly average
withdrawal of 1.9, 3.8, 7.6 or 15 million litres per day (0.5,
1, 2, or 4MGD) was simulated at a point approximately
midway along the length of Potato Creek, where transit time
to the downstream terminus of the modelled system
(at USGS gauge 02346500 in Thomaston GA) was <24 h.
Water withdrawals were simulated as modifications to the
historical flow conditions (1952–2006). Empirical relations
between actual water use at Thomaston (1980–2000), time
of year (month) and monthly precipitation were used to
adjust the simulated withdrawal to mimic realistic seasonal
patterns in demand and withdrawal rates. Additionally,
withdrawals were reduced in the simulations as necessary
to maintain streamflow at or above the 7Q10 flow (i.e.
7-day, 1-in-10 year low flow, a statistic used by the State
of Georgia to regulate withdrawals) and were halted if flow
fell below the 7Q10 statistic to mimic regulatory require-
ments. Occupancy dynamics for the study system down-
stream from the withdrawal were simulated using four
alternative but plausible models on the basis of the lower
Flint River dataset (J. T. Peterson, unpublished data) for
effects of flow on reproduction and local extinction and
assuming mainland–island colonization dynamics. For all
four models, colonization was simulated as a function of
maximum 10-day flow, and flow was modelled at the coarse
HRU resolution. Our purpose was to examine effects of al-
ternative assumptions regarding hydrology–metapopulation
linkages on simulated, management-relevant outcomes (i.e.
effects of water withdrawal on stream fishes).
ain in the USA. River Res. Applic. (2012)
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STREAM FISH METAPOPULATION DYNAMICS
All scenario and model combinations were simulated for
500 model runs. Each model run resulted in a time series
of metapopulation transitions, driven in part by the scenario-
specific simulation of daily streamflows, from which annual
fish species presence and species richness were simulated.
Species richness was calculated as the number of species
present for each year and stream segment combination.
Mean species richness and occupancy rate (i.e. proportion
of simulations in which a segment was occupied) were
calculated for each stream segment and year combination
by averaging values across the 500 model runs. The sensi-
tivity of estimated species richness to model assumptions
and error was evaluated using a one-way value sensitivity
analysis (Clemen, 1996). The effect of water use on fishes
was examined by calculating the change in estimated
species richness and fish occupancy rate compared with
the no water-use scenario for the segments containing, and
downstream of, the simulated withdrawal point.
0
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Minimum 10-d standard deviation of flow
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igure 4. Measured (broken lines) and simulated (solid lines) stream-
ow statistics for an 11-year calibration period for the Potato Creek
atchment precipitation–runoff model. Median and standard
eviation of daily flow, minimum and maximum 10-d average flow
nd minimum 10-d standard deviation of flow are plotted annually

for spring (black lines) and summer (grey lines) seasons
RESULTS

Model simulation results—hydrology and geomorphic
template

Metrics representing the major flow components identified
as drivers in the conceptual framework were calculated from
daily flow simulations using PRMS for the Potato Creek
catchment. Simulated streamflows matched the measured
data fairly well on an annual and monthly basis. An analysis
of daily streamflow using the Nash–Sutcliffe test statistic
(Nash and Sutcliffe, 1970) resulted in annual values ranging
from 0.2 to 0.9, with the median value for the calibration
period being 0.8. A Nash–Sutcliffe value of 1.0 would indi-
cate a perfect match with the measured data, and a negative
value would indicate that the annual mean simulated the
daily streamflow as well as the model. Comparison of simu-
lated and measured seasonal flow statistics (Figure 4) for the
calibration period showed generally good matches for
median and maximum flows and for flow stability (10-d
standard deviation in flow). The model tended to overesti-
mate springtime minimum flows and to underestimate flow
variation in the spring and also underestimated flow stability
(i.e. overestimated minimum 10-d standard deviation of
flow) in two of 11 summers (Figure 4).
The stream network defined for the Potato Creek study

area comprised 1391 stream segments, ranging in link
magnitude from 1 (headwater streams, approximately half
of the segments) to 699 (the downstream most segment of
the Potato Creek main stem). Most segments represented
in the model were classified as ‘confined’ (76%) and ‘not
isolated’ (94%). Approximately, half of the segments had
a downstream link of seven or less, and thus were connected
to relatively small streams.
Published 2012. This article is a U.S. Government work and is in the public dom
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Model simulation results—metapopulation dynamics and
response sensitivity

Species occupancy dynamics for stream fishes were respon-
sive to year-to-year variation in streamflow. For example,
simulations across the drought of 2000–2001 showed low-
ered species richness particularly in headwaters more distant
from the main stem, with richness recovering in years fol-
lowing the drought (Figure 5). Averaged over all segments,
simulated species richness declined from 22 to 17 during
the drought. In these simulations, using the best-supported
hierarchical regression models on the basis of the lower
Flint River dataset, local extinction was modelled as a func-
tion of seasonal 10-day minimum flow, and colonization
and reproduction were functions of seasonal 10-day max-
imum flow. Dispersal was allowed to occur from the main
stem to connected tributaries. However, analysis of the
lower Flint dataset also provided support for modelling
extinction and colonization as functions of seasonal median
flows and reproduction as a function of the standard
deviation of summer flows (J. T. Peterson, unpublished
data). Using these alternative models (particularly for
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Figure 5. Changes in fish species richness as simulated across a
period of severe drought in the Potato Creek catchment, using
best-supported models of metapopulation dynamics in relation to
streamflow parameters and allowing colonization from the main
stem to tributaries. The sequence illustrates species loss in individ-
ual stream segments during the peak of the drought (2001),
especially from headwaters most distant from the Potato
Creek main stem (darkest HRUs in the centre of each diagram)

and recovery following the drought
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extinction probability) or specifying an alternate model for
dispersal (i.e. from nearby occupied reaches) resulted in
almost as much difference in estimated average species rich-
ness across the full simulation period (1952–2006) as was
simulated to occur across an extreme drought (Figure 6).
17 18 19 20 21 22 23

Colonization flows

Hydrologic model resolution

Flow model error (overall)

Flow model calibration

Stream channel classification error

Reproduction model

Colonization dynamics

Extinction model

Model component

Fish species richness

Drought

Figure 6. Sensitivity of simulated species richness in the Potato
Creek basin to uncertainty in model components, listed from great-
est (top) to least influential. Bar lengths represent the range of esti-
mated species richness in an average stream segment obtained by
varying the flow component driving extinction, reproduction and
colonization, allowing colonizers to originate either in adjacent
occupied reaches or occupied main stem reaches (‘colonization
dynamics’), applying error in geomorphic classification and hydro-
logic simulations, calibrating hydrologic models to differing flow
values and modelling hydrology at coarse versus fine resolution.
For comparison, the uppermost bar represents the simulated
effect of drought on average species richness, using the best-
supported models for metapopulation dynamics and allowing

colonization from main stem to tributaries
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Model outcomes were less sensitive to channel misclassifi-
cation (set at 33%), choice of flow parameter as priority
for PRMS calibration, flow model error (set at �3.2% in
spring months and �10% in summer months) and HRU
resolution (coarse versus fine; Figure 6).
Simulated response of fishes to water extraction from

Potato Creek for the 54-year period illustrated species
differences in responses and, again, model sensitivity to
assumed mechanisms. For example, habitat-generalist
species such as mosquito fish (Gambusia spp.) showed
almost no change in occupancy rate with increasing water
extraction, whereas occupancy rates of flow-dependent
species (e.g. Apalachicola redhorse, Moxostoma sp. cf. M.
poecilurum and blackbanded darter, Percina nigrofasciata)
declined by as much as 19% (Figure 7). Total species rich-
ness declined with increasing water use, but the severity of
decline depended on choice of metapopulation models
(Figure 7). Specifically, simulated reductions in species
richness were more severe if extinction probabilities were
modelled as a function of minimum flow events rather than
median flow levels (Figure 7). In contrast, the extraction
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Figure 7. Simulated outcomes of increasing levels of water with-
drawal from Potato Creek on downstream fish occupancy, aver-
aged across segments, for a 54-year simulation. Top: Examples
of species-specific responses to increasing withdrawal (illustrated
for mosquitofish Gambusia spp., pirate perch Aphredoderus saya-
nus, redbreast sunfish Lepomis auritus, Apalachicola redhorse,
Moxostoma sp. cf. M. poecilurum, blackbanded darter, Percina
nigrofasciata). Bottom: Effects of alternate choices of flow
components as drivers of extinction and reproduction probabilities
on species richness response to increasing withdrawal.
Withdrawal level is expressed as million gallons per day (MGD);

1MGD=3785m3 day�1

ain in the USA. River Res. Applic. (2012)

DOI: 10.1002/rra



STREAM FISH METAPOPULATION DYNAMICS
scenarios had minor effects on high flows and flow variabil-
ity, so choice of models for reproduction did not strongly
affect outcomes (Figure 7).
DISCUSSION

The coupled hydrology–metapopulation modelling approach
developed in this work is intended to provide natural
resource stakeholders a tool for exploring effects of water
management scenarios on stream biota in the context of spe-
cific landscapes. The approach addresses a recognized need
for river management tools that integrate physical and bio-
logical processes (Anderson et al., 2006; Tetzlaff et al.,
2007; Petts, 2009; Vaughan et al., 2009), in part, to allow
predictions of outcomes for novel combinations of future
land use, water use and climate. Our analysis illustrates
the feasibility of simulating streamflow and metapopulation
dynamics in a spatially explicit framework that can account
for multiple linkages between streamflow and population
processes. Dynamic, age-structured (Peterson and Kwak,
1999) and individual-based (Van Winkle et al., 1998;
Morales et al., 2006; Railsback et al., 2009) models have
been used to simulate mussel and fish population responses
to flow variability within individual stream reaches. Simu-
lating metapopulation dynamics provides an approach for
scaling-up to predict species persistence across a network
of geomorphically variable stream reaches or habitat
patches (Stelter et al., 1997) in response to future scenarios
of streamflow. Our analysis also illustrates the large effects
of model uncertainty on projected outcomes, highlighting
areas where research and monitoring could substantially
increase understanding and improve model usefulness for
management.
Uncertainty regarding biological dynamics stems from in-

complete understanding of the complex interplay of stream-
flow dynamics and ecological processes (Doyle et al., 2005;
Anderson et al., 2006; Naiman et al., 2008). Even the
simple conceptual framework used here specifies possible
influences of multiple flow components on alternative
biological processes (migration, productivity and survival),
and this accords with general ecological understanding
(Bunn and Arthington, 2002). Quantitatively separating
these effects using observation data is likely to be difficult.
Explorations of biotic conditions across gradients of flow
variables commonly show support for multiple flow-
ecology relations (Roy et al., 2005; Knight et al., 2008;
Konrad et al., 2008; Kennen et al., 2010). Correlation
among values for streamflow components even within a
particular season can also result in empirical support for dif-
fering hypotheses of how flows affect population processes
(Craven et al., 2010; Peterson et al., 2011). For example,
fish survival during dry summers may be empirically related
Published 2012. This article is a U.S. Government work and is in the public dom
to reductions in median flows (and potentially in habitat,
food availability, refugia from predators) or to lowered
minimum flows (with potentially acute stress from expos-
ure, extreme temperatures or depressed dissolved oxygen).
As illustrated here, the choice between modelling local
species extinction as a function of median flow levels versus
minimum flows can result in substantial differences among
population projections for water management or climate
scenarios. Assumptions regarding the relative importance
of the catchment main stem as a source of colonists for
fishes following extreme events (Labbe and Fausch, 2000;
Albanese et al., 2009) also substantially influence projected
metapopulation dynamics. Better understanding of fish
dispersal dynamics will be important for forecasting effects
of flow diversions or stream impoundments that isolate
headwaters from downstream parts of a stream network.
Monitoring data can reduce uncertainties about ecological

mechanisms, particularly if data can be compared with measur-
able projections derived using alternative hypotheses (Williams
et al., 2007). In addition to hypotheses regarding mechanisms
of flow effects on biota, noted previously, the landscape-scale
approach presented here also entails testable, hypothesized
effects of channel geomorphology and segment location within
the stream network on ecological dynamics. Dynamic simula-
tion models offer a particular benefit for testing projected
outcomes with monitoring data because both time and space
can be explicitly specified. For example, a coupled hydrol-
ogy–metapopulation model can provide expected changes
in species occurrences given particular flow events, such
as a series of especially wet or dry years, in specific classes
of streams or parts of the landscape. Testing projections of
ecological dynamics should help narrow the considerable
uncertainty in general relations describing ecological
response to flow alteration (Poff and Zimmerman, 2010)
and would be an integral part of applying a dynamic model-
ling approach to management and conservation.
Increasing availability of remote sensing data can reduce

the inherent uncertainty in the physical components of
dynamic landscape models. For example, calibration of the
hydrologic model for Potato Creek has already been sub-
stantially improved by incorporating depression-storage
effects of thousands of uncatalogued ponds, detected using
Landsat 7 Enhanced Thematic Mapper (USGS, Sioux Falls,
South Dakota, USA) images taken during wet conditions
(Viger et al., 2010). Remote sensing data can also be used
to quantify seasonal and multiyear fluctuations in vegetation
dynamics driven by climate and management, which in turn
influence stream hydrology via effects on evapotranspiration
rates (Jones and Desmond, 1998; Jones, 2002). Future
hydrologic models may accommodate shorter timeframe
variations in vegetation condition, either captured through
remote sensing or modelled separately, to improve the
accuracy of streamflow projections.
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Characterizing ecologically relevant geomorphic varia-
bility across a stream system entails challenges in mapping
and potentially in projecting channel dynamics. Bedrock
geology can be useful in inferring channel form and process
because bedrock below or adjacent to a stream channel exerts
a direct control on channel morphology largely independent
of flow regime (Schumm, 2005). Unfortunately, geologic
maps in many landscapes have been compiled at scales that
are too coarse to apply at the stream segment scale, and
geologic mapping units often are not defined in ways that
relate to erodibility. Using digital elevation model-derived
slopes to predict channel confinement provides a starting point
for characterizing geomorphic context; however, errors in
channel classification demonstrably affect model outcomes.
Increased availability of high-resolution light detection and
ranging-derived elevation datasets is expected to improve
maps of spatial variability in channel characteristics across
stream networks.
Projecting future stream channel condition poses a different

challenge. Legacy sediment (Trimble, 1974; Jackson et al.,
2005; Walter and Merritts, 2008) and modern land-use
practices interact with watershed topography and geology to
result in ongoing dynamic changes to the physical habitat
template (Jacobson and Coleman, 1986). For example, studies
of Georgia Piedmont streams have identified complex,
ongoing adjustments characterized by channel incision in
urban areas and variable channel responses in rural areas
(Riley, 2009; Riley and Jacobson, 2009), although historical
data are not sufficient to predict rates and locations of channel
adjustment. Nevertheless, the fact that dynamic adjustments
are occurring is important to acknowledge for long-term water
resources and conservation planning. Of particular interest is
the probability that a reach will undergo transition from one
class to another, for example, from an unconfined (wide,
shallow) to confined (narrow, deep) alluvial channel, as a
result of channel incision in urbanizing watersheds.
Improving representation of water quality effects on

metapopulation dynamics often will require new data. For
example, water-quality data currently available in the Flint
River basin are mostly limited to intermittent samples and
short periods of continuous water-quality parameters
collected by the USGS, a situation typical of many areas
of the southeastern USA and elsewhere. Additionally, given
the broad array of water quality parameters that potentially
influence biota, it may be reasonable to use observed corre-
lations among land use, water quality and biotic compos-
ition (Meador and Goldstein, 2003; Gregory and Calhoun,
2007; Calhoun et al., 2008) to infer indirect predictors of
water quality effects on species occurrence. Thus, in the
Potato Creek model, we use previously estimated effects
of urban and row crop-agriculture land use on species-
specific occurrence probabilities for fishes in the Flint River
basin (Ruiz and Peterson, 2007) to initialize model
Published 2012. This article is a U.S. Government work and is in the public dom
conditions. A next step in model refinement would be to
monitor species occupancy, streamflow and water quality
dynamics in streams receiving runoff from varying land uses
and use those data to parameterize direct water quality
effects on metapopulation transition probabilities.

Model application

Issues of model evaluation and complexity could impede
broad application of the approach presented here to actual
management situations. Model evaluation requires
measured data that can be compared with predicted values.
Although this is feasible for models predicting hydrology
and geomorphic form, the scarcity of replicated, long-term
data for occurrences of stream biota means that evaluation
of the metapopulation dynamics model will require new
monitoring data. This limitation also applies to development
of generalized flow-ecology relations; in both cases, an
adaptive management implementation is seen as essential
for evaluating and improving the theoretical models used
to inform management (Poff et al., 2010 and discussed
previously).
The complexity issue is double-edged. The approach

developed here is both a greatly simplified representation
of flow-ecology dynamics, and yet may be perceived as
too data-intensive for general use. Hydrologic models, how-
ever, are now commonly used in resource management
(Poff et al., 2010), as are geographic information systems.
Whereas data scarcity may limit biological validation, meta-
population models may be developed using relatively short
(e.g. three to four generation time spans) time series of
species occupancy observations. We suggest this is a valid
and feasible approach if the intent is to apply models in an
adaptive management framework. In addition, the capacity
to generate measurable predicted biological outcomes in a
spatially explicit context may justify the cost of model
development when management decisions involve highly
valued resources.
Integrated hydrology–metapopulation models could also

be useful for generating predicted flow-ecology relations in
support of regional flow policy development (Arthington
et al., 2006; Poff et al., 2010). Specifically, stakeholders
could use these models to compare biological outcomes
under alternative management scenarios and, importantly,
for alternative hypothesized linkages between flow alter-
ation and biological processes. Identifying ecological uncer-
tainties that most strongly influence projected outcomes can
guide investments in future research and monitoring.
CONCLUSIONS

Models that couple hydrology and metapopulation dy-
namics in a landscape context offer a novel approach for
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quantitatively comparing effects of alternative management
actions on stream biodiversity. There is much potential for
expanding the modelled interactions, depending on manage-
ment targets and data availability. For example, interactions
with host fishes could be critical to include in models for
freshwater mussel species; these and other interactions (e.g.
between nest-associating fishes or predators and prey) could
be incorporated as conditions on metapopulation state transi-
tions. Research will be needed to narrow uncertainty in model
structure (what flow components drive ecological processes,
how flow-ecology relations are modified by variation in
water quality and stream geomorphology) and to improve
characterization of landscape and hydrologic dynamics. How-
ever, as illustrated here, the tools are presently available to
begin applying plausible hypotheses of flow effects on meta-
population processes to evaluate cumulative, landscape-scale
effects of water management, land use and climate change
on aquatic species distributions and persistence.
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